

USING OPENCL TO INCREASE SCA APPLICATION PORTABILITY

Steve Bernier (NordiaSoft, Gatineau, Québec, Canada; Steve.Bernier@NordiaSoft.com);

François Lévesque (NordiaSoft, Gatineau, Québec, Canada;

Francois.Levesque@NordiaSoft.com);

Martin Phisel (NordiaSoft, Gatineau, Québec, Canada; Martin.Phisel@NordiaSoft.com);

David Hagood (Aeroflex, Wichita, Kansas, USA; David.Hagood@Aeroflex.com);

ABSTRACT

The Software Communications Architecture (SCA) is the

defacto standard to build Software Defined Radio (SDR)

radios. Over one hundred thousand SCA military radios

have been deployed worldwide by several nations. The SCA

offers a component-based operating environment for

heterogeneous embedded system that ensures applications

are portable across platforms made of General Purpose

Processors (GPPs) and Digital Signal Processors (DSPs).

 The SCA offers a high level of portability for

applications have been implemented for GPPs and DSPs.

SCA components can easily be ported across different

processors using different operating systems and

communication buses. However, the level of portability is

reduced when source code is tuned for specific instructions

sets. Furthermore, using Field Programmable Gate Arrays

(FPGAs) drastically reduces the level of portability for SCA

components.

 Specialized instruction sets are very widely used for

high performance military radio platforms. Consequently,

finding a solution to increase portability of components that

run on such processing elements could provide significant

cost reductions when an application is ported. In fact,

application portability is the number one innovation on the

top ten list of most wanted innovations compiled by the

Wireless Innovation Forum (WInnF).

 This paper describes how the Open Computing

Language (OpenCL) can be used in conjunction with the

SCA to build more portable applications. OpenCL is a

framework for writing programs that execute across

heterogeneous platforms consisting of GPPs, DSPs, FPGAs,

and graphics processing units (GPUs). The paper starts with

an overview of OpenCL, describes how SCA components

can be built using OpenCL, provides performance metrics,

and concludes on how the SCA could be improved to offer

better support for OpenCL.

1. INTRODUCTION

The SCA was created to standardize how real-time

embedded applications are implemented, packaged,

installed, deployed, and controlled. The main goal of the

SCA is to make applications very portable across different

heterogeneous systems. It was created for the Joint Tactical

Radio System (JTRS) program, a US DoD program that

funded the development of a new kind of military radios:

Software-Defined Radios (SDRs). The JTRS program

started by funding the definition of a new standard called

SCA and ended with the acquisition of SCA-compliant SDR

military radios.

 Software-Defined Radios are embedded systems that

process a very large quantity of data in real-time. As such, in

addition to embedded GPPs, SDR platforms often use DSPs

and FPGAs as well. Thanks to the SCA, software can be

made very portable even for embedded GPPs and DSPs.

SCA components are typically made of control source code

and signal processing source code. Portability of SCA

components can be affected when the signal processing part

is optimized for special instructions sets such as the

Streaming SIMD Extensions (SSE) for Pentium processors,

the AltiVec instructions for PowerPC processors, or the

NEON instructions for ARM processors.

 Furthermore, portability is very limited when FPGA

firmware is used for signal processing. Different FPGAs

offer different resources. Often firmware is designed to use

specific resources (e.g. block RAMs, FIFOs, DSP blocks,

multipliers) that vary from one FPGA manufacturer to

another. Besides, the FPGAs of a single manufacturer can

vary significantly from one model to another in terms of

such resources. As such, portability has been the holy grail

of FPGA firmware designers. It is a research topic that has

received a lot of attention over the years. Thus far, no one

solution have prevailed over the others. Over time, the SCA

has improved some aspects of portability for applications

that use FPGAs. It did so by standardizing how software

components running on DSPs and GPPs can interact with

Proceedings of WInnComm-Europe 2015, Copyright ©2015 Wireless Innovation Forum All Rights Reserved

65

components that run on FPGAs. With that approach,

firmware can be adapted or rewritten for new FPGAs

without having a serious impact on the software it interacts

with. Nevertheless, the SCA does not improve the portability

of the actual FPGA firmware.

 One of the popular approaches to improve portability of

high performance signal processing source code is to use

domain-specific accelerators. The approach consists in

writing source code for widely available libraries of domain-

specific APIs that execute fast thanks to co-processors.

Microsoft uses this approach with DirectX which offers a

large number of functions that can be optimized to run on

GPUs [1]. The same approach has also been used with

FPGAs as co-processors [2, 3].

 While the concept of accelerators can increase

portability, different APIs must be used for different type of

processing elements (GPPs, DSPs, GPUs, FPGAs). Relying

on different APIs adds complexity for designers of

applications for heterogeneous embedded systems. It also

prevents portability across different processing elements.

 Open Computing Language (OpenCL) is a framework

for implementing software components that can execute

across different processing elements [4]. It allows a

developer to implement a function in source code that can be

compiled for GPPs, DSPs, GPUs, and FPGAs. The

following sections of this paper provide an overview of

OpenCL, describe how SCA components can be built using

OpenCL, and provide performance metrics. The paper

concludes on how the SCA could be improved to offer better

support for OpenCL.

2. THE OPEN COMPUTING LANGUAGE

OpenCL is an open and royalty-free standard maintained by

a non-profit technology consortium called the Khronos

Group [5]. It has been created to allow high-performance

applications to execute on various devices of different

architectures implemented by different vendors.

 OpenCL greatly improves performances for a wide

range of applications by allowing task-based and data-based

parallel programming. With OpenCL, a computing system is

made of a number of compute devices connected to a host

processor. Compute devices are GPPs, GPUs, DSPs, or

FPGAs. The host processor is a GPP.

 An OpenCL application is made of two parts: kernels

and a host program. OpenCL kernels are routines

(algorithms) performing the data processing. Kernels are

implemented in a C-like language and executed on the

compute devices. A single compute device typically consists

of many individual processing elements (PEs) and a kernel

can run on all or many of the PEs in parallel. The host

program runs on the host processor and is implemented

using an application programming interface (API) to launch

kernels on the compute devices and manage device memory.

The OpenCL standard defines host APIs for C and C++;

third-party APIs also exist for other programming languages

[6, 7, 8]. An OpenCL framework consists of a library that

implements the host APIs, and an OpenCL compiler for the

target compute device(s).

2.1. Portability

The goal of OpenCL is to allow high-performance

applications to run on any hardware. It provides portability

by allowing the same source code to be compiled for

different target compute devices. Host programs are

compiled using the C/C++ compiler and the appropriate

library for host APIs. Kernel programs can be pre-compiled

for specific target compute devices before run-time. They

can also be compiled on-the-fly at run-time for the required

target devices.

 OpenCL also extends C/C++ by providing standardized

vector processing instructions and data types to exploit

vector engines of the modern processors [9].

3. USING OPENCL TO INCREASE PORTABILITY

OF SCA APPLICATIONS

SCA applications are made of one or many components that

perform data processing. Every SCA component is made of

configuration properties and ports to process data.

Components also contain several implementations; one for

each processing element it supports. For portable

components, the different implementations are produced by

building the same source code for the different processing

elements.

 For components that need to be optimized, the data

processing source code needs to change significantly to

exploit processor-specific instructions. The software part of

a component that deals with control does not need to change

much from one implementation to another.

 However, using OpenCL, the data processing source

code does not require any change to exploit the different

processor architectures. In fact, OpenCL code can also be

executed on FPGAs [10, 11]. OpenCL effectively reduces

the development time required for a component to run on

multiple processing elements including FPGAs. FPGA

firmware is built using platform-specific features and

requires very long development cycles.

Proceedings of WInnComm-Europe 2015, Copyright ©2015 Wireless Innovation Forum All Rights Reserved

66

3.1 A Simple Approach to using OpenCL with the SCA

SCA applications are deployed on SCA platforms via the

execution of their components. The SCA Core Framework

chooses an implementation for each component and

executes it using an SCA device. The choice of the SCA

device is made by matching the requirements of the

component implementations with the capabilities being

advertised by the SCA device. For instance, a component

that only has one implementation that requires an x86

processor can only be executed by an SCA Device that

advertises being capable of running x86 implementations.

 Deploying a component implementation that uses

OpenCL to perform signal processing works the same way

as deploying a component that requires SSE or AltiVec

instructions. The application component that is implemented

using OpenCL simply needs to specify a requirement to be

deployed on an SCA device that represents an OpenCL-

capable processing element. Such an SCA device must

advertise capabilities that identify its capability to host

OpenCL programs.

4. CREATING AN OPENCL SCA COMPONENT

Figure 1 shows the structure of a typical SCA component

where data to be processed is received via an input port and

sent, after the processing is performed, to another

component via an output port.

Figure 1. Structure of a typical SCA component.

 The figure shows the distinction between the

configuration and control code, and the data processing

code. For an OpenCL SCA component, the host program is

part of the configuration and control code, and the kernels

are part of the data processing code. The kernels can

potentially be executed on different compute devices (i.e.

OpenCL-capable processing elements) when many compute

devices are connected to the GPP where the host program

runs. OpenCL provides APIs to list platform and compute

device information, to obtain the identifiers for compute

devices, and to specify which device should be used to

execute kernels. One single SCA device can therefore load

and execute kernels on any compute device connected to the

GPP where the SCA device runs.

 Typically, the source code for a kernel is located in a

separate file from the OpenCL program source file. The

OpenCL API offers several ways to create a program from

which kernels are instantiated. A program can be created

from a buffer containing program source code, from a buffer

containing the program binaries, either in binary format

specific to a device or in an intermediate representation that

will be converted to the device-specific code format. The

appropriate format is selected based on the level of

portability and performance needed for an application.

 For the SCA, this means the kernel files are not

embedded in the source file for the SCA component

implementation itself. The way to model this with the SCA

is to define a software dependency between the SCA

component implementation and the OpenCL kernel files it

uses. Doing so will cause the SCA Core Framework to load

the kernel files on the same SCA device used to execute the

SCA component implementation.

4.1. Loading the kernels

Once an SCA component start running, it must load the

kernels and instantiate them before the data processing

starts. In our experiments, the kernel creation was done from

during the initialization of the SCA application component

(i.e. LifeCycle::initialize()). Kernel creation involves

initializing OpenCL, listing and selecting compute devices,

loading kernel files, and creating the kernels. This is all done

using OpenCL APIs which makes calls to device drivers.

 To be more portable, it is forbidden for SCA

application components to make calls to native device

drivers. However, just like applications are allowed to use

several POSIX APIs, the SCA specification should allow

OpenCL APIs since this standard is broadly supported

across different types of processing elements. Alternatively,

it would be possible to create an SCA-level API that SCA

devices could implement for application components to use.

This would prevent implementations of application

component from being compiled and linked against native

device drivers.

4.2. The Data Flow

OpenCL kernels use compute device memory to get input

data and provide output data. The host program is

responsible for creating compute device memory to be used

by the kernels. The host is also responsible for copying data

from its memory to the compute device memory and vice-

versa if it is required.

Output Port Input Port

Configuration and

control code

Data processing code

Proceedings of WInnComm-Europe 2015, Copyright ©2015 Wireless Innovation Forum All Rights Reserved

67

 SCA components usually receive and send data through

ports. This means the data is in the memory of the host

processor. Therefore, the input data received by an input

port must be copied into the OpenCL compute device

memory (H2D) before executing a kernel, and the output

data produced by a kernel must be copied from the compute

device memory to the host memory (D2H), after a kernel has

executed. Figure 2 shows the data flow for every sequence

of data being processed by an OpenCL SCA component.

Figure 2. Data flow of data processed by an OpenCL SCA

component.

 Copying data between different memories affect the

overall data processing performance. Copy of data can be

avoided when the compute device is a CPU since the

memory of the device is the same as the host. But, when the

compute device is not a CPU then data must be copied. We

have collected some metrics regarding this topic that will be

presented in the next section.

5. METRICS

In this section, we discuss some metrics that can impact the

performance of data processing using OpenCL. We also

suggest solutions or research areas to address the issue we

identify. To perform our experimentation, we used a desktop

computer with an Intel i7-4770 CPU with 8 cores clocked at

3.40 GHz, 4GB of memory. We used the 64 bits version of

Fedora 20 with the Linux kernel version 3.11.10-301. As for

OpenCL, we used two compute devices. The first one was

the CPU device of the Intel OpenCL platform with OpenCL

1.2. The second OpenCL device was PCI-E 3.0 NVIDIA

GeForce GT 635 GPU using the NVIDIA OpenCL CUDA

7.0.41 platform with OpenCL1.1.

5.1 OpenCL Program Format

In section 2.1, we described that OpenCL brings portability

by allowing the same source code to be compiled and

executed for various compute devices with different

hardware architecture. Building every kernel a head of time

and packaging the binaries with the application components

is in line with the common SCA. Each SCA application

component contains several implementations of the

component. Using OpenCL means each SCA component

implementation will come with kernel binaries targeting a

specific compute device. The deployment of an SCA

application lead to the choosing of the right implementations

of each component and each kernels based on the hardware

available in the SCA platform.

 However, with the proper driver support, kernels can be

built on the fly at the moment the SCA application gets

deployed. In such a case, the application is packaged with

the kernels either in source code format or in an intermediate

binary format which is portable across different compute

devices. Indeed, OpenCL supports a format called Standard

Portable Intermediate Representation (SPIR) for kernel

binaries. SPIR is cross-platform and designed for

heterogeneous parallel computing. It is based on LLVM IR

[12].

 Using this approach reduces the requirement for having

several implementations of an SCA component and OpenCL

kernels. If the SCA platform contains one GPP and several

OpenCL compute devices, there is no need to prebuild all

the kernels. The kernels can be built on the fly based on the

selected compute devices. This approach also future-proves

the SCA application since it supports any compute device

that might be integrated in the future. In short, it makes the

SCA application more portable to different SCA platforms

that use the same GPP but different OpenCL compute

devices. However, using this approach incurs a runtime cost

during the deployment of applications since the OpenCL

builder is invoked on the fly.

 To evaluate the impact of selecting an approach over

another, measurements have been made regarding the time it

takes to create a kernel from source code, SPIR format, and

from native binaries prebuilt for specific compute devices.

The tests have been executed ten times for each file format

and file size (i.e. small vs large) of the source code. To

represent a small source file, we used a kernel routine

implemented in 16 lines of code (LOC). We used a routine

implemented with 398 LOC to represent a large source file.

The SPIR binaries were created using the options “-x spir -

spir-std=1.2” with the OpenCL compiler. Table 1 shows the

average times it takes to create a kernel that is ready to be

executed starting with above-mentioned 3 types of kernel

files.

Proceedings of WInnComm-Europe 2015, Copyright ©2015 Wireless Innovation Forum All Rights Reserved

68

Table 1. Average time in µs to create a kernel based on

source code file size.

 Small Large

Format in kernel file CPU GPU CPU GPU

Source code 13149 391 142089 447

Native binary 968 378 4381 396

Binary in SPIR 923 -- 4187 --

 As it can be seen from Table 1, creating a kernel from

source code is surprisingly fast. Creating a kernel involves

compiling and linking the kernel source code for different

compute devices. For a CPU compute device, it takes

approximately 13 to 142ms to create a kernel from source

code. Doing the same for the GPU compute device only

takes 0.3 to 0.5ms. Note that creating kernels only happens

once each time an application is launched, no matter how

long the application runs for. The reason it takes a different

amount of time to create kernels for different compute

devices is that different tool chains are used. Another

surprising result is that creating a kernel for a GPU compute

device takes about the same time whether from source code

or from native binary. For a CPU compute device, creating a

kernel from binary SPIR format takes about the same time as

creating from native binary, even slightly faster. Since SPIR

binaries are portable, this format represent the best solution

for use with the SCA. The SPIR format also offers the side

benefit of not exposing the kernel source code on the

deployment platform.

5.2 Buffer Size

As mentioned before, the input data must be moved from the

host memory to the target compute device memory on which

a kernel will be executed. Similarly, the output data must be

moved back to the host memory after the execution of the

kernel. The time spent copying data affects the overall time

required for OpenCL kernels to process data. Experiments

have been conducted to measure the impact of copying of

data across the bus that connects the host and the target

devices.

 The experiments used various buffer sizes, from 4KB

for the size of small buffers to 3.125 MB for the size of

large buffers (800 times the size of the small buffers). The

measurements were averaged over twenty tests in each

direction. Table 2 provides the averages in microseconds

and illustrates the difference in performance between

different types of compute devices. It also quantifies that the

cumulative cost of copying data across memory types can be

significant. Figure 3 shows the plotting of these numbers.

NordiaSoft is currently investigating, with good success,

different approaches to reduce the costs of moving data.

Results to be published in a follow up paper.

Table 2. Average time to copy buffers.

Buffer

size (KB)

CPU GPU

H2D

(µs)

D2H

(µs)

H2D

(µs)

D2H

(µs)

4 5 9 10 12

32 7 12 19 19

320 32 42 101 104

640 67 75 191 312

960 112 105 406 464

1280 155 153 468 614

1600 193 161 520 694

1920 247 186 577 814

2240 274 209 653 903

2560 333 234 706 1020

2880 608 296 746 1194

3200 694 372 794 1307

Proceedings of WInnComm-Europe 2015, Copyright ©2015 Wireless Innovation Forum All Rights Reserved

69

Figure 3. Average time to copy buffers from H2D and D2H.

6. CONCLUSION

OpenCL is effective to increase the portability of SCA

applications across heterogeneous platforms. It allows

application components to be portable between GPPs,

DSPs, GPUs, and FPGAs. In short, OpenCL addresses

directly the number one innovation from the top 10 most

wanted innovations as defined the Wireless Innovation

Forum. The paper describes how the SCA can benefit

from OpenCL. It explains how OpenCL SCA components

can support multiple compute devices with a single

implementation of the signal processing source code.

 The paper underlined the fact that portability for

signal processing functions can be achieved at the source

code level and at the binary level which offers more

protection for intellectual property. Metrics have been

presented to illustrate how fast it is to instantiate OpenCL

kernels. The paper also provided metrics that show the

performances associated with moving data across different

types of memory.

 A simple approach to support OpenCL with SCA has

been presented. It described how an SCA Device must

advertise its capabilities to execute OpenCL kernels. It

also explained how SCA application components can

integrate OpenCL kernels. We have identified some areas

of potential improvement for the SCA specification to

better support OpenCL.

 Finally, the paper showed how the copy of data

between the OpenCL host processor and a target compute

device can potentially affect real-time performances. More

research can be performed on this topic to alleviate the

issue.

7. REFERENCES

[1] F. D. Luna, Introduction to 3D Game Programming with

DirectX 10, WordWare Publishing Inc., Sudbury, MA,
USA, 2008.

[2] W. Zhang, V. Betz, and J. Rose, Portable and Scalable
FPGA-Based Acceleration of a Direct Linear System
Solver, ACM Transactions on Reconfigurable
Technology and Systems, Vol. 5, No. 1, Article 6,
March 2012.

[3] G. C. T. Chow, K. Eguro, W. Luk, and P. Leong, A
Karatsuba-based Montgomery Multiplier. FPL '10
Proceedings of the 2010 International Conference on Field
Programmable Logic and Applications. 2010.

[4] http://en.wikipedia.org/wiki/OpenCL.
[5] The Khronos OpenCL Working Group, The OpenCL

Specification version 2.0, 2014,
https://www.khronos.org/opencl/.

[6] http://mathema.tician.de/software/pyopencl/
[7] https://code.google.com/p/javacl/
[8] https://github.com/Nanosim-LIG/opencl-ruby
[9] M. Scarpino, OpenCL in Action, Manning Publications

Co., Shelter Island, 2012.
[10] R. Brueckner, How OpenCL Could Open the Gates for

FPGAs, 2015, http://insidehpc.com/2015/02/how-opencl-
could-open-the-gates-for-fpgas/.

[11] Implementing FPGA Design with the OpenCL Standard,
November 2013,
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/wp/wp-01173-
opencl.pdf.

[12] The Khronos Group Inc., The SPIR™ Specification
version 1.2, 2014, https://www.khronos.org/registry/spir/

Proceedings of WInnComm-Europe 2015, Copyright ©2015 Wireless Innovation Forum All Rights Reserved

70

